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We have examined fractal patterns formed by the injection of air into oil in a thin �0.127 mm� layer
contained between two cylindrical glass plates of 288 mm diameter �a Hele-Shaw cell�, for pressure differ-
ences in the range 0.25��P�1.75 atm. We find that an asymptotic structure is reached at large values of the
ratio r /b, where r is the pattern radius and b the gap between the plates. Both the driving force and the size of
the pattern, which reaches r /b=900, are far larger than in past experiments. The fractal dimension D0 of the
pattern for large r /b is 1.70±0.02. Further, the generalized dimensions Dq of the pattern are independent of q,
Dq�1.70 for the range examined, −11�q�17; thus the pattern is self-similar within the experimental uncer-
tainty. The results for Dq agree well with recent calculations for diffusion-limited aggregation �DLA� clusters.
We have also measured the probability distribution of unscreened angles. At late times, the distribution ap-
proaches a universal �i.e., forcing and size-independent� asymptotic form that has mean 145° and standard
deviation 36°. These results indicate that the distribution function for the unscreened angle is an invariant
property of the growth process.
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I. INTRODUCTION

Highly branched fractal structures develop in a variety of
problems including directional solidification, crystallization,
dendritic growth, chemical electrodeposition, growth of bac-
terial colonies, combustion fronts, and viscous fingering
�1–4�. Viscous fingers grow when a low viscosity fluid dis-
places a high viscosity fluid. We consider here viscous fin-
gering patterns formed between two closely spaced radial
plates �a Hele-Shaw cell� where the less viscous fluid is in-
jected in the center and a fractal pattern then grows outward.
In the radial geometry, the growing fingers continually split
because of the interfacial instability, thus generating new fin-
gers and side branches.

In order to obtain a complex pattern with a wide range of
scales, the characteristic length scale of instability of the in-
terface must be as small as possible. This instability length,
sometimes called the capillary length, is

�c = �b� �

�V
, �1�

which corresponds to the most unstable wavelength given by
a linear stability analysis of a planar interface between a less
viscous fluid and a more viscous fluid �5�. Here V is the
velocity of the interface, b is the gap thickness of the cell, �
is the interfacial tension, and � is the difference between the
viscosities of the two fluids, where the less viscous fluid is
forced in the direction of the more viscous fluid. Thus small
�c is achieved by having b and � small and � and V large.
Our cell is especially designed to achieve small �c.

Paterson �6� pointed out that the growth of viscous finger-
ing patterns, an archetype of growth in a Laplacian field, is
similar to the growth of aggregates produced by the numeri-
cal model of diffusion limited aggregation �DLA� introduced
by Witten and Sander �7�. In both systems, a highly ramified
pattern develops with most of the growth occurring at the
extremities, while the inner region is screened and remains

unmodified during further pattern development. However,
the relation between the Laplacian growth problem and the
continuum limit of DLA remains an open question that is
still debated �8–11�.

The statistical and geometrical properties of radial viscous
fingering patterns have been examined in a few previous ex-
periments. Measurements of the fractal dimension D0 of the
patterns �12–14� yielded results slightly higher but consistent
with the dimension of DLA clusters. However, the range of
length scales where scaling held was small, and very few
studies examined the spectrum of generalized dimensions,
Dq. Couder �13� found that for q�0, the values of Dq were
nearly constant and close to the values observed for DLA
aggregates.

In this paper, we present measurements of the spectrum of
generalized dimensions for viscous fingering patterns formed
in a radial Hele-Shaw cell for driving forces and pattern size
much larger than previous experiments. Our goal is to under-
stand the geometrical and growth properties of the patterns at
asymptotically long times and high forcing, where the
Laplacian growth is conjectured to reach a universal form.

We note that our measurements concern the viscous fin-
gering pattern itself, not its harmonic measure, which is the
probability measure of the pressure gradient field surround-
ing the pattern. Many studies of DLA have concerned the
fractal geometry of the harmonic measure rather than that of
the DLA cluster. �For DLA, the harmonic measure is the
probability measure for a random walker coming from infin-
ity to hit the boundary of a cluster.� DLA clusters are self-
similar, that is, Dq has the same value for all q �15�, while the
harmonic measure is a multifractal �15–17� with Dq depend-
ing on q.

Fractal dimensions Dq provide information about geo-
metrical properties that can be compared for various
branched fractal patterns and models. However, additional
information is needed to describe the growth process, which
has not yet received a general theoretical treatment. The pos-
sible existence of a critical screening angle in Laplacian
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growth has recently received much attention, as it could pro-
vide a clue to a hierarchical fractal ordering �18–24�. Pattern
growth occurs primarily at the outer edges of the pattern; the
region to either side of a fast growing tip is screened. Studies
of a “threshold screening model,” which has a screening pa-
rameter that can be varied, have yielded a critical value of a
screening constraint, 	c�130°, where the patterns changed
from compact to one-dimensional �23,25� and the radial
symmetry was broken. Although the model’s screening con-
straint is not a parameter that can varied in experiments,
some indication of the possible existence of a critical angle
was obtained by Lajeunesse and Couder �18�, who studied
growth in wedges. They observed that for a wedge angle
	
	c=90°, two main branches coexisted, while for smaller
angles the instability failed to create two independent long-
lived structures—one branch stopped growing. They argued
that the critical angle they determined was probably under-
estimated, the pattern being too small to have reached an
asymptotic state.

Screening of the growth of DLA patterns was studied by
Arneodo and co-workers �19–21�, who used the “wavelet
transform microscope” to investigate the distribution of
branching angles of a cluster at different scales. They sug-
gested the existence of a fivefold symmetry associated with a
critical angle 	c=144°. Screening for DLA patterns grown
in the wedge geometry was examined by Kessler et al. �22�,
who found a critical wedge angle 120° �	c�140°, below
which only one main branch existed. Screening was also
examined in experiments on electroless deposits in the
diffusion-limited regime by Kuhn et al. �24�, who measured
the angle between branches at different scales and found a
predominance of fivefold symmetry.

However, the screening effect has not been examined in
experiments on viscous fingering patterns in the axisymmet-
ric configuration. We report here measurements and analysis
of the distribution of unscreened angles. Our measurements
reveal a self-similar probability distribution of the un-
screened angles once the asymptotic stage of the growth is
reached.

In the following section we describe our experimental
system and present images of growing viscous fingering pat-
terns. Results for the fractal dimension D0 and the general-
ized dimensions Dq are presented in Secs. III and IV, respec-
tively. Measurements of the probability distribution for the
unscreened angles are presented in Sec. V, and the conclu-
sions are given in Sec. VI.

II. EXPERIMENTAL SETUP AND DESCRIPTION OF THE
GROWTH

A. System

The system we have used to generate radial viscous fin-
gering patterns is shown schematically in Fig. 1. The cell is
the same as the one used by Sharon et al. �26�. It consists of
two 288 mm diameter optically polished circular glass plates
�60 mm thick�, which are flat to 0.13 �m and separated by a
gap b of 0.127 mm. The plates are clamped into an alumi-
num holder with a 25.4 mm thick Plexiglas clamp, which
seals a 12.7 mm annular buffer around the plates. The buffer

and gap are filled with a silicone oil �viscosity �
=345 mPa s, surface tension �=21.0 mN/m�.

Patterns are formed by imposing a constant air pressure
Pin at a hole in the center of the bottom plate, while the
pressure Pout for the oil buffer around the cell �see Fig. 1� is
set to either 10−3 atm or to 1 atm. The high rigidity and
flatness of the plates permit us to achieve large pressure dif-
ferences while keeping the variation in the gap very small.
This system provides a well-defined pressure difference, �P,
which had four values in the experiments presented here:
0.25, 0.50, 1.25, and 1.75 atm. With this forcing system, the
finger velocity is essentially constant during the growth pro-
cess, as can be seen in Fig. 2�a�. The lengths �c and the
nondimensional Capillary numbers Ca �where Ca=�V /��
obtained for the finger velocities illustrated in Fig. 2�b�
for �P=0.25, 0.50, 1.25, and 1.75 atm are, respectively,
��c ,Ca�= �1.18 mm,0.12�, �0.79 mm,0.26�, �0.49 mm,
0.66�, and �0.41 mm,0.96�. The smallest �c is about three
times the gap thickness b.

The view through the upper plate is unobstructed; hence
the entire viscous fingering structure can be observed at all
times. Using a digital camera �DVC-1300, 1300�1030
pixels� at 12 frames/s, we obtain images throughout the en-
tire growth process with a spatial resolution of 2b. Subtrac-
tion of background and thresholding then provide binary im-
ages of the two phases; these are used to determine the
geometrical properties of the interface.

B. Growth of a pattern

The initial growth generates a circular front that becomes
unstable and develops protrusions that grow and evolve, as
illustrated by the time sequence in Fig. 3. Growth of a vis-
cous fingering structure is compared to that of a DLA cluster
�27� in Fig. 4. Fast growing protrusions of the viscous fin-
gering pattern screen the slow growing protrusions, which
slow and ultimately stop. Simultaneously, the fastest growing
tips have more space to grow, and they become unstable to
tip-splitting, continually generating smaller scales. In the ra-

FIG. 1. A cross section of the radial Hele-Shaw cell. The pres-
sure of the air injected through the center hole was adjusted from
1 to 1.75 atm, while the pressure in the oil buffer was set to 10−3 or
1 atm. The thick optically polished plates provide a gap that is
uniform to better than 2% even at the highest pressure difference.
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dial geometry there is no large length scale such as the chan-
nel width in the channel geometry, and a steady state cannot
be achieved. The growing pattern becomes more and more
complex and highly ramified. At high pressures, the resultant
highly branched patterns have a minimum finger width more
than two orders of magnitude smaller than the pattern size
�see Fig. 3, t=2.8 s�.

III. FRACTAL DIMENSION D0

The determination of the fractal or box dimension D0 of
the asymptotic pattern �e.g., Fig. 3, t=2.8 s� is illustrated in
Fig. 5. The data for each value of �P=0.25, 0.50, 1.25, and
1.75 atm were obtained, respectively, from 9, 12, 12, and 4

experimental realizations of asymptotic patterns �r /b
800�.
The fractal dimension was obtained from the slope of
log N��� versus log � for small �, where N��� is the number
of boxes of size � needed to cover the pattern. The local
slope is shown as a function of � in Fig. 5�b�.

The slope is essentially independent of �P and � for 0.6
� log10����1.7; this slope yields D0=1.70±0.02. The scal-
ing is cut off at small scales by the effect of surface tension,
which inhibits the formation of branches with scales smaller
than �c; also, at small scales, � becomes comparable to b and
the third dimension can no longer be ignored. For large val-
ues of �, the pattern size approaches the container size, and
finite-size effects become important.

We made two tests to gain confidence in our dimension
algorithm: �i� D0 was computed using the correlation func-
tion algorithm �28,29�, and �ii� our box counting algorithm
was applied to fractals of known dimension. For the first test
we computed the density-density correlation function C�r�
= ��r���r�+r�	 �normalized at r=0� with =1 in the air
phase and =0 in the oil phase; the average was performed
over 12 realizations. As illustrated in Fig. 6, at intermediate
length scales C�r� decays as a power law r−�; the decay
exponent is related to the fractal dimension of the pattern by
D0=2−� �26�. We obtain C�r��r−0.29±0.03 over nearly a de-
cade of r, which yields D0=1.71±0.03, consistent with the
result from the box counting algorithm.

We tested the box counting algorithm directly by examin-
ing several fractals of known dimension, such as the
Sierpinski Carpet and the Sierpinski Gasket �30�. These frac-
tals were generated with the same experimental resolution as
the experimental data. For example, the Sierpinski Gasket in
Fig. 7�a� has a size 751�751 pixels �six iterations�. The re-
sultant scaling range was about one decade, as Fig. 7�b�
shows. The values deduced for D0 for this fractal and for
others with known dimension were always within 1% of the
correct values. Box counting algorithms have been shown to
slightly underestimate dimension values �31,32�, and that
was the case for the fractals of known dimension that we
examined �e.g., Fig. 7�.

Table I compares our result for D0 with results from pre-
vious experiments on radial viscous fingering and with cal-
culations of D0 for DLA clusters. Our value of D0 for radial
viscous fingering patterns is consistent with but slightly
smaller than the values obtained by Rauseo et al. �12�,
Couder �13�, and May and Maher �14�. However, we have

FIG. 2. �a� The distance r from the center of the pattern to the
most distant finger tip for a pressure difference �P=1.25 atm. The
velocity is essentially constant; hence the instability length �c is
constant throughout the growth process, except for a very small but
discernible increase when the finger tip begins to feel the outer
boundary. �b� The velocity of the finger tip increases linearly with
the pressure drop �P.

FIG. 3. Snapshots of the radial pattern at different times during the growth for �P=1.25 atm. At t=2.8 s, the radius of the pattern is
113 mm �r /b=890�.
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achieved an order of magnitude larger forcing, as indicated
in Table I by values of the dimensionless forcing parameter

C = Q�/b� , �2�

where Q is the areal rate of injection of air. We use the
parameter C �not to be confused with the correlation function
C�r�� because its value was given in earlier papers. In our
case, Q is not a constant but is estimated by measuring the
instantaneous increase in size of the pattern at r /b
800.
Although a previous experiment �12,14� also used thick glass
plates to keep plate flexing to a minimum, that experiment
did not achieve conditions of such high forcing with a well-
defined, constant, and homogeneous plate separation; the up-
ward pressure on the top plate lifted it and limited the forcing
range. Our use of firmly clamped optically polished �to
0.2 micrometer rms flatness� plates of 60 mm thickness pro-
vides a well-defined plate separation �see Sec. II�. Also our
fractals are larger than in previous experiments—see in Table
I the values of rmax /b, where rmax is the radius of the largest
growth.

In Sec. V we show that, for the range of forcing studied,
the distribution function for the unscreened angle approaches
its asymptotic form at r /b�500. The large values of C and
r /b achieved in our experiments were not accessible in pre-
vious experiments �see Table I�, but appear to be essential for
determining asymptotic properties of a developing viscous
fingering pattern �see Sec. V�. Thus we conclude that
1.70±0.02 is the asymptotic value for the fractal dimension.

The independence of D0 on the forcing observed here
confirms and extends to a higher value of the driving force
the results of Rauseo et al. �12� and May and Maher �14�.
Rauseo et al. �12� observed no discernible dependence of D0
with the forcing in the range they investigated �1.1�C
�35�. May and Maher �14� found that the fractal dimension
was approximatively 1.71 for 10�C�40 and suddenly in-

creased to an apparent asymptotic value of 1.79 as the driv-
ing force became large �C�40�; it did not change with fur-
ther increase of the forcing. A different result was obtained in
earlier experiments by Ben-Jacob et al. �33�, who found that
the fingering pattern went over to a “dense-branching” mor-
phology with a fractal dimension of 2 as an asymptotic late
stage of development was approached. Couder �13� and May
and Maher �14� pointed out that the Ben-Jacob et al. result
may have been a consequence of the flexing of the Plexiglas
plates used in their experiments.

Some experiments have used a constant areal injection
rate Q �12,14�, which means that the finger tip velocity de-
creases as the flow progresses, leading to �c increasing with
time �1�. This leads to an overestimate of the fractal dimen-
sional. Also, conditions in which the smallest scale ��c� in-
creases with growth are not appropriate for comparisons with
DLA, since the smallest length scale for a DLA cluster �the
size of a random walker� is fixed. Therefore, rather than use
constant Q, we follow Couder �13� and use a constant pres-
sure difference, which produces a constant �c for a growing
cluster.

Our result for D0 is consistent with the most recent nu-
merical estimates of the fractal dimension of DLA aggre-
gates, D0=1.713±0.003 �34–36� �see Table I�. This result
suggests a similar fractal morphology of the two growth phe-
nomena but contrasts sharply with Barra et al.’s prediction
that the asymptotic fractal dimension of Laplacian growth
patterns should be higher than the fractal dimension of DLA
and bounded from below by 1.85 and could possibly be as
high as 2 �9,11�.

IV. GENERALIZED FRACTAL DIMENSIONS

Further characterization of the viscous fingering patterns
can be achieved by determining the generalized or Renyi

FIG. 4. �Color online� Comparison of the time evolution of the radial growth patterns for �a� viscous fingering ��P=1.25 atm� and �b�
diffusion limited aggregation �27�. The colors indicate the ages of the patterns; the oldest �first created� region is blue and the youngest is red.
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dimensions Dq, which are defined for all real values of the
index q �37�. The dimension Dq is a generalization of the box
counting definition: cover the pattern with a grid of square
boxes of size � and define pi��� to be the relative portion of
the pattern in cell i, and define N��� to be the total number of
boxes of size � needed to cover the whole pattern. Then Dq is
given by �31,38�

Dq = lim
�→0

1

q − 1

log Zq���
log �

, �3�

where Zq is the partition function,

Zq��� = �
i=1

N���

pi���q. �4�

Thus the index q corresponds to the order of the moments of
pi at length scale �.

The limit of Eq. �3� is not experimentally accessible, but
Dq can be obtained from the slope of graphs of log Zq / �q
−1� as a function of log���. We determine Dq by averaging
Zq over 50 randomly located grids for each size �. In addi-
tion, Zq values are averaged over all the realizations for a
given experimental condition. Results for Dq for q�0 are
shown in Fig. 8�a�. As in the determination of D0, there is a
limited range where scaling is observed and in which the

FIG. 6. Average density-density correlation function, C�r�. The
dashed line shows a fit to the fractal scaling region where C�r�

r0.29±0.03, yielding a fractal dimension of D0=1.71±0.03. From
�26�.

FIG. 7. These graphs illustrate the determination of D0 for a
fractal of known dimension, the Sierpinski gasket �30�, which is
shown in the inset of �a�. The plot in �a� of log10N��� vs log10���
was used to obtain D0 from the local slope computed over the
interval �log10���=0.45. The result for the entire scaling range
0.6� log10����1.7 is D0=1.575+0.020, which is just 0.6% smaller
than the known value, �log 3� / �log 2�=1.584 96, indicated by the
horizontal dashed line.

FIG. 5. Determination of the fractal dimension D0 for the vis-
cous fingering patterns for the different forcing conditions, �P
=0.25, 0.50, 1.25, and 1.75 atm. The fractal dimension is computed
for the asymptotic pattern �r /b
800�. �a� The value of D0 is given
by the slopes of the graphs of log10N��� as a function of log10���,
where N has been normalized by the number of boxes of size one
pixel needed to cover the pattern. Curves for successively larger
values of �P are shifted downward by −0.2 to facilitate compari-
son. �b� Values of D0 given by the local slopes computed from a
linear least squares fit over the interval � log10���=0.45. These val-
ues are nearly independent of �P and are approximately constant in
the range 0.6� log10����1.7. From these measurements we con-
clude D0=1.70±0.02 in the range studied.
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pattern can be considered as a fractal object: the local slopes
depend only very weakly on q and � for 1.1� log10���
�1.8, and yield Dq=1.70±0.04 for 0�q�17. This result
supports earlier measurements that suggested Dq is nearly
constant and equal to D0 for viscous fingering patterns �13�.

The fixed-sized algorithm is suitable for q�0 but not for
q�0 because it is difficult to determine small values of pi
accurately. Therefore, for q�0 we use a fixed-mass algo-
rithm introduced by Badii and Politi �39�. In this method, Dq
is obtained from

�

Dq
= lim

m→0

log����m��−�	
log m

, �5�

where ��m� is the size of a box, centered at random on the
pattern and containing a relative portion m of the pattern. We
implement Eq. �5� as follows: we choose a random location
in the pattern and then increase the box size �, evaluating at
each growth step the measure m contained in such a box.
Repeating this procedure over 1000 randomly located points
gives pairs of values �� ,m�. With this set we can evaluate the
average, ����m��−�	, for each discretized measure m. We then
average over all the realizations. The value of Dq can then be
extracted from the slope of a graph of log����m��−�	 as a
function of log�m�. Figure 8�b� illustrates the determination
of Dq for q�0, using the fixed-mass algorithm. The values
of Dq show only a weak dependence on q and m in a range of
the measure m that extends from log10�m�=2.2 to log10�m�
=3.9. We conclude that, for −11�q�−0.2, Dq=1.7±0.1, in
agreement with D0 and with Dq for q
0. The scatter in the

FIG. 9. Results from fixed-size �q�0� and fixed-mass �q�0�
computations of the generalized fractal dimension Dq. The measure-
ments indicate no dependence of Dq on �P. The data yield D0

=1.70±0.02, Dq=1.70±0.04 for 0�q�17, and Dq=1.7±0.1 for
−11�q�0. Hence the fractal viscous fingering patterns are self-
similar objects with a fractal dimension 1.70, independent of q.

TABLE I. Values of the fractal dimension D0 obtained for viscous fingering patterns and diffusion limited
aggregation patterns. Cmax is the maximum value of the forcing parameter C, which is defined in Eq. �2�.

Authors D0 Comment Cmax rmax /b

Praud and Swinney 1.70±0.02 radial viscous fingering 800 900

Rauseo et al. �12� 1.79±0.07 radial viscous fingering 35 190

Couder �13� 1.76 radial viscous fingering

May and Maher �14� 1.79±0.04 radial viscous fingering 75 190

Witten and Sander �7� 1.70±0.02 square lattice radial DLA

Tolman and Meakin �34� 1.715±0.004 off-lattice radial DLA

Ossadnik �35� 1.712±0.003 off-lattice radial DLA

Davidovitch et al. �36� 1.713±0.003 DLA �conformal map theory�

FIG. 8. These graphs illustrate the determination of the gener-
alized fractal dimensions Dq for a particular experimental condition,
�P=1.25 atm. �a� Value of Dq for q
0, obtained from the local
slopes of graphs of �log Zq� / �q−1� versus log���. Dq is constant and
independent of q for nearly a decade of length scale. The Dq values
obtained from the data between the vertical lines are shown in Fig.
9. �b� Value of Dq for q�0, obtained from the local slopes of the
graphs log����m��−�	 as a function of log�m� �fixed-mass algorithm�.
The average values of q for the values of � in the graph are �� ,q�
= �−2,−0.2�, �−4,−1.3�, �−10,−4.9�, �−16,−8.5�, and �−20,−10.8�.
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results in Fig. 8�b�, which is reflected by the error bars in
Fig. 9 for q�0, is essentially statistical.

The spectra of generalized dimensions Dq were also ob-
tained for other values of �P, and we found that the range in
which the pattern can be considered a fractal object de-
creases with decreasing �P. However, as Fig. 9 illustrates,
the results obtained for Dq for different �P are the same
within the experimental uncertainties. The apparent slight
difference in the functional dependence of the Dq curves for
q
0 and q�0 appears to be a difference in the results given
by the two algorithms rather than a property of the fractal
structure of the pattern; the difference is within the uncer-
tainties �cf. Fig. 9�.

Thus we conclude that Dq is independent of q for viscous
fingering patterns in the limit of small gap and high forcing,
i.e., the patterns are self-similar. Simulations of diffusion
limited aggregation �20,21,35,40,41� have also yielded a
monofractal �constant Dq� structure for DLA clusters. Hence
the fractal morphology of viscous fingering patterns and
DLA clusters is the same within the limits of experimental
and numerical resolution. This self-similar property was also
reported for two-dimensional electrodeposition clusters in
the limit of small ionic concentration and high voltage �42�.
Thus it appears to be a general property of asymptotic fractal
structures grown in a Laplacian field.

V. UNSCREENED ANGLE

To characterize the growth process, we consider the
screening effect that occurs during the growth. Growth along

the boundary of the pattern is concentrated at the outer tips
�where the pressure gradient is highest�, as Fig. 10 illustrates.
The probability of growth decreases toward the center of the
cell. During the growth process, the active region moves out-
ward, leaving behind “dead zones,” which are shielded by
the outer tips. This feature of Laplacian growth occurs also
for DLA, where it is highly unlikely that a random walker
will penetrate into the inner region.

We investigate the screening effect following a procedure
used by Kaufman et al. �43�, who determined the distribution
of unscreened angles for growing DLA clusters. Images of
the cluster at successive time steps reveal the “active region”
where growth occurs. For each point on the boundary of the
active region at an instant of time, we define the unscreened
angle as the largest angle that can be drawn from this point
without including any of the preexisting pattern �Fig. 10�.
Probability distributions for the unscreened angles obtained
this way are found to be insensitive to the size of the time
step used to identify the active region, provided that the time
step is large enough so the boundary between the active and

FIG. 10. Illustration of the definition of the unscreened angle 	.
Gray indicates structure that had grown to rmax /b=660 �ratio of
pattern radius to gap thickness� at time=2.1 s ��P=1.25 atm�, and
black shows the additional growth in the subsequent 0.17 s. The
growth is concentrated at the tips of the branches. For every point
on the boundary between the preexisting �gray� and active �black�
regions, we define an unscreened angle 	, which is the largest
angle that can be drawn from the point without including any point
of the preexisting pattern.

FIG. 11. Probability distribution of the unscreened angle. �a�
The distribution function at each stage of the growth is independent
of the forcing �P, as these two examples at different values of r /b
illustrate. �b� The evolution of the probability distribution toward an
asymptotic distribution is illustrated with these data for �P
=1.25 atm.
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preexisting regions remains unchanged even though the ac-
tive region increases in size.

The probability distribution p�	� of the unscreened angle
evolves during the growth of the pattern, but at any point in
the growth, the distribution is the same at different �P, as
Fig. 11�a� illustrates. This independence of forcing is consis-
tent with our finding of an independence of the fractal di-
mension on �P.

In early stages of growth, the pattern does not exhibit
much ramification. Most of the active regions have enough
room to grow and are not strongly affected by the neighbor-
ing branches; the mean unscreened angle is large and the
distribution function is negatively skewed �cf. Fig. 11�b� for
r /b=160�. As the pattern continues to grow, the main
branches develop more and more side branches, and these
ramifications increase the screening effect. The mean of the
probability distribution function for the unscreened angles,
p�	�, shifts toward smaller angles and becomes symmetric,
converging to an invariant asymptotic form, pasymp�	� �see
Fig. 11�b� for r /b=484, 644, and 806�. This is the first report
of the convergence. Such a measure of the screening effect
has not been investigated previously for radial viscous fin-
gering; also, for DLA clusters, the distribution function of
unscreened angles reported by Kaufman et al. �25,43� was
integrated in time.

To quantify the convergence of the distribution of the un-
screened angle, we introduce the function

��r� =
1

2�
� �pr�	� − pasymp�	��2d	�1/2

, �6�

which gives, at a given �P, a measure of the difference
between the distribution pr�	� �obtained for a pattern of ra-
dius r� and the final distribution, pasymp�	�. The evolution of
� as a function of r /b is shown in Fig. 12. For all experi-
mental conditions, pr�	� converges exponentially fast to-
ward pasymp�	�, and the e-folding length scale is r /b=200
�Fig. 12�. The collapse of the different curves in Fig. 12
indicates that, at large forcing, the evolution of the distribu-
tion function is governed by r /b. For r /b
500, the distri-

bution has reached pasymp�	� within our signal-to-noise
level.

Our measurements of the asymptotic distribution of un-
screened angles for four values of �P all superpose, indicat-
ing that pasymp�	� is self-similar, as the linear and semilog

FIG. 12. Evolution of �, which is the root mean square depar-
ture of distribution function pr�	� from the asymptotic distribution,
pasymp�	�, as a function of the size of the pattern r /b �see Eq. �5��.
This semilog plot illustrates the exponential approach to the
asymptotic distribution, �
exp�−�r /b� /��, where �=200. For r /b

500, the distribution has reached the asymptotic distribution
within our noise level.

FIG. 13. Asymptotic probability distribution function for the
unscreened angle: �a� linear plot, �b� semilog plot, �c� comparison
of the average measured asymptotic distribution �solid line� with
the distribution function calculated in an on-lattice DLA algorithm
�dashed line� �25� and with a Gaussian distribution of the same
mean and variance as the measured distribution �dotted line�. Data
in �a� and �b� for different forcings �P fall on a single curve, indi-
cating the independence of the forcing. The data are for r /b
500
�cf. Fig. 11�b��.
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plots in Figs. 13�a� and 13�b� illustrate. The observed distri-
bution is compared in Fig. 13�c� to one calculated using an
on-lattice algorithm for DLA clusters �25,43�.

For both large and small angles, the screening angle dis-
tribution decreases continuously �cf. Fig. 13� with no sugges-
tion �within our resolution of 10−3 in p�	�� of a cutoff where
p�	� would be zero below a minimum angle. Similarly, there
is no suggestion of a cutoff at a maximum angle. The prop-
erties of the measured asymptotic distribution and the on-
lattice DLA distribution �25� are, respectively, mean angle
145°,127°; standard deviation 36°,51°; skewness 0.06,0.3;
and kurtosis 2.3,3.8. The mean screening angle has also been
computed for an off-lattice DLA algorithm, which yielded
151° �25�, closer to our measured screening mean angle than
obtained for on-lattice DLA.

VI. CONCLUSIONS

We have presented measurements of radial viscous finger-
ing that have been shown to reach the asymptotic regime. To
reach this asymptotic regime, both the forcing and the rela-
tive cluster radius r /b must be sufficiently large. In our ex-
periments, the forcing parameter C �see Sec. III and Table I�
reached about 800, and the ratio of the largest radius of the
pattern to gap thickness r /b reached 900; both of these pa-
rameters are far larger than in previous experiments. We
found the asymptotic state was achieved for r /b=500, which
is less than half the cell radius �r /b=1100�; hence boundary
effects are negligible �cf. Fig. 2�a��.

The fractal dimension measured for the asymptotic vis-
cous fingering patterns is D0=1.70±0.02, where the uncer-
tainty includes both the statistical uncertainty determined
from multiple measurements and an estimate of systematic
uncertainty in our box counting algorithm. Calculations of
the generalized dimension Dq for positive and negative q
have revealed no discernible q dependence for the ranges

examined: for −11�q�0, Dq=1.70±0.1 and for 0�q
�17, Dq=1.70±0.04. Thus within the accuracy of our mea-
surements, we conclude that radius viscous fingering patterns
formed with high forcing are monofractals with Dq=1.70,
independent of q.

We have found that the distribution function for the un-
screened angles is independent of the strength of the forcing
throughout the whole evolution of the patterns. In particular,
the asymptotic distribution is independent of forcing; thus it
provides a quantitative description of the screening effect.

The measured asymptotic distribution �Fig. 13� has a
broad peak with a well-defined mean of 145°, which is close
to the critical angle obtained in DLA simulations �22,23,25�
and close to 2� /5=144°, associated with fivefold symmetry
�19–21,24�. However, we find no evidence of any macro-
scopic fivefold structure: the asymptotic distribution is broad
with a standard deviation of 36°, and there is no obvious
relation between the distribution function for unscreened
angles and the existence of a critical angle or a pentagonal
symmetry. Thus it may be a coincidence that the mean of the
asymptotic distribution is close to 2� /5.

In conclusion, our determination of an invariant
asymptotic distribution of unscreened angles provides a new
property that will help in the development of a theory of
Laplacian growth of fractal patterns �17,44–46�. Our mea-
sured distribution function of unscreened angles is qualita-
tively �but not quantitatively� similar to that found in an
on-lattice computation for DLA �25�; it would be interesting
to compare the measurements with an off-lattice DLA com-
putation.
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